Nonlinear system identification using clustering algorithm and particle swarm optimization
نویسندگان
چکیده
The identification of nonlinear systems operating in a stochastic environment is an important problem in various discipline science and engineering. Fuzzy modeling and especially the T-S fuzzy model draw the attention of several researchers in recent decades this is due to their potential to approximate highly nonlinear behavior. An algorithm allowing the identification of the premise and consequent parameters intervening in the T-S fuzzy model at the same time and this starting from the minimization of four optimization criteria is used. A modification on both last optimization criterion is considered. Then an optimization method using the Particle Swarm Optimization method (PSO) is presented in this paper. Particle Swarm Optimization algorithm combined with the proposed algorithm is also presented. Simulation results on a nonlinear system and on a level control system shows that the proposed algorithm combined with the PSO algorithm gives results more effective than the proposed algorithm only more particularly to the level convergence and time computing.
منابع مشابه
Fuzzy Particle Swarm Optimization Algorithm for a Supplier Clustering Problem
This paper presents a fuzzy decision-making approach to deal with a clustering supplier problem in a supply chain system. During recent years, determining suitable suppliers in the supply chain has become a key strategic consideration. However, the nature of these decisions is usually complex and unstructured. In general, many quantitative and qualitative factors, such as quality, price, and fl...
متن کاملNon-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملIdentification of Wind Turbine using Fractional Order Dynamic Neural Network and Optimization Algorithm
In this paper, an efficient technique is presented to identify a 2500 KW wind turbine operating in Kahak wind farm, Qazvin province, Iran. This complicated system dealing with wind behavior is identified by using a proposed fractional order dynamic neural network (FODNN) optimized with evolutionary computation. In the proposed method, some parameters of FODNN are unknown during the process of i...
متن کاملOptimal Placement of Remote Control Switches in Radial Distribution Network for Reliability Improvement using Particle Swarm Optimization with Sine Cosine Acceleration Coefficients
Abstract: One of the equipment that can help improve distribution system status today and reduce the cost of fault time is remote control switches (RCS). Finding the optimal location and number of these switches in the distribution system can be modeled with various objective functions as a nonlinear optimization problem to improve system reliability and cost. In this article, a particle swarm ...
متن کاملIIR System Identification Using Improved Harmony Search Algorithm with Chaos
Due to the fact that the error surface of adaptive infinite impulse response (IIR) systems is generally nonlinear and multimodal, the conventional derivative based techniques fail when used in adaptive identification of such systems. In this case, global optimization techniques are required in order to avoid the local minima. Harmony search (HS), a musical inspired metaheuristic, is a recently ...
متن کامل